Расширение "Исследование функции одной переменной"

Расширение предназначено для исследования функций одной переменной. Оно позволяет:
табулировать значение аргумента по арифметической прогрессии;
табулировать значение аргумента в заданном диапазоне;
табулировать значение аналитической функции для всех заданных значений аргумента;
найти все корни функции в заданном диапазоне изменения значений аргумента;
найти все экстремумы функции в заданном диапазоне изменения значений аргумента;
построить цветную карту изменения значений и приростов функции;
при установленном приложении grafik.php позволяет построить график исследуемой функции.
Расширение требует установки файла f1.php (не входит в базовую комплектацию).

Функция tap()

Функция tap(a,h,n) возвращает вектор с n значениями арифметической прогрессии, начиная со значения a с шагом h. Используется для подготовки массива последовательных значений аргумента.
Разметка
 ~v=tap(-2*pi(),0.1,100)
 :::Значения аргумента
 @vvt(v)
Вывод

Значения аргумента

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
-6,28
-6,18
-6,08
-5,98
-5,88
-5,78
-5,68
-5,58
-5,48
-5,38
-5,28
-5,18
-5,08
-4,98
-4,88
-4,78
-4,68
-4,58
-4,48
-4,38
-4,28
-4,18
-4,08
-3,98
-3,88
-3,78
-3,68
-3,58
-3,48
-3,38
-3,28
-3,18
-3,08
-2,98
-2,88
-2,78
-2,68
-2,58
-2,48
-2,38
-2,28
-2,18
-2,08
-1,98
-1,88
-1,78
-1,68
-1,58
-1,48
-1,38
-1,28
-1,18
-1,08
-0,983
-0,883
-0,783
-0,683
-0,583
-0,483
-0,383
-0,283
-0,183
-0,083
0,017
0,117
0,217
0,317
0,417
0,517
0,617
0,717
0,817
0,917
1,02
1,12
1,22
1,32
1,42
1,52
1,62
1,72
1,82
1,92
2,02
2,12
2,22
2,32
2,42
2,52
2,62
2,72
2,82
2,92
3,02
3,12
3,22
3,32
3,42
3,52
3,62

Функция tzd()

Функция tzd(a,b,n) возвращает вектор с n последовательными значениями в диапазоне [a,b], построенными с равным шагом. Используется для подготовки массива последовательных значений аргумента.
Разметка
 ~v=tzd(-pi(),pi(),100)
 ~k=tap(1,1,100)
 :::Значения аргумента
 @vvt(v)
Вывод

Значения аргумента

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
-3,14
-3,08
-3,01
-2,95
-2,89
-2,82
-2,76
-2,70
-2,63
-2,57
-2,51
-2,44
-2,38
-2,32
-2,25
-2,19
-2,13
-2,06
-2,00
-1,94
-1,87
-1,81
-1,75
-1,68
-1,62
-1,55
-1,49
-1,43
-1,36
-1,30
-1,24
-1,17
-1,11
-1,05
-0,984
-0,920
-0,857
-0,793
-0,730
-0,666
-0,603
-0,539
-0,476
-0,413
-0,349
-0,286
-0,222
-0,159
-0,095
-0,032
0,032
0,095
0,159
0,222
0,286
0,349
0,413
0,476
0,539
0,603
0,666
0,730
0,793
0,857
0,920
0,984
1,05
1,11
1,17
1,24
1,30
1,36
1,43
1,49
1,55
1,62
1,68
1,75
1,81
1,87
1,94
2,00
2,06
2,13
2,19
2,25
2,32
2,38
2,44
2,51
2,57
2,63
2,70
2,76
2,82
2,89
2,95
3,01
3,08
3,14

Функция tvx()

Функция tvx(v,w) возвращает вектор значений выражения v, вычисленного для каждого значения массива w. Используется для подготовки массива табулированных значений заданного выражения для массива значений аргумента. Выражение v должно описывать некоторые вычисления, зависящие от переменной, обозначаемой буквой х. Имя передаваемого массива значений аргумента должно отличаться от обозначения х. Более того, при использовании в статье функции tvx в ней не должна использоваться другая значимая переменная, имеющая обозначение х, поскольку в результате действий функции она будет изменена.
Разметка
 ~v=tzd(-pi(),pi(),100)
 ~k=tap(1,1,100)
 ~y=tvx('sin(x)+cos(x)',v)
 :::Значения аргумента и функции
 @nt(1)
 @st(2,'',k)
 @st(1,'<b>x</b>',v)
 @st(1,'<b>y</b>',y)
 @kt(1)
Вывод

Значения аргумента и функции

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
x
-3,14
-3,08
-3,01
-2,95
-2,89
-2,82
-2,76
-2,70
-2,63
-2,57
-2,51
-2,44
-2,38
-2,32
-2,25
-2,19
-2,13
-2,06
-2,00
-1,94
-1,87
-1,81
-1,75
-1,68
-1,62
-1,55
-1,49
-1,43
-1,36
-1,30
-1,24
-1,17
-1,11
-1,05
-0,984
-0,920
-0,857
-0,793
-0,730
-0,666
-0,603
-0,539
-0,476
-0,413
-0,349
-0,286
-0,222
-0,159
-0,095
-0,032
0,032
0,095
0,159
0,222
0,286
0,349
0,413
0,476
0,539
0,603
0,666
0,730
0,793
0,857
0,920
0,984
1,05
1,11
1,17
1,24
1,30
1,36
1,43
1,49
1,55
1,62
1,68
1,75
1,81
1,87
1,94
2,00
2,06
2,13
2,19
2,25
2,32
2,38
2,44
2,51
2,57
2,63
2,70
2,76
2,82
2,89
2,95
3,01
3,08
3,14
y
-1,00
-1,06
-1,12
-1,17
-1,22
-1,26
-1,30
-1,33
-1,36
-1,38
-1,40
-1,41
-1,41
-1,41
-1,41
-1,39
-1,38
-1,35
-1,33
-1,29
-1,25
-1,21
-1,16
-1,10
-1,05
-0,984
-0,918
-0,848
-0,774
-0,697
-0,618
-0,536
-0,452
-0,366
-0,279
-0,190
-0,101
-0,011
0,078
0,168
0,257
0,344
0,431
0,515
0,598
0,678
0,755
0,829
0,900
0,968
1,03
1,09
1,15
1,20
1,24
1,28
1,32
1,35
1,37
1,39
1,40
1,41
1,41
1,41
1,40
1,39
1,37
1,34
1,31
1,27
1,23
1,18
1,13
1,08
1,02
0,951
0,883
0,811
0,736
0,658
0,577
0,494
0,409
0,322
0,235
0,146
0,056
-0,034
-0,123
-0,212
-0,301
-0,388
-0,473
-0,557
-0,638
-0,717
-0,793
-0,865
-0,935
-1,00

Функция vkv1()

Функция vkv1(v,a,b[,n[,e]]) возвращает вектор со значениями всех корней выражения v на отрезке [a,b]. Изначально отрезок делится на n равных подотрезков. По умолчанию n=100. Если на одном из подотрезков функция меняет знак, то производится уточнение значения корня с точностью до е методом пополамного деления. По умолчанию e=0.00001.
Разметка
 ~k=vkv1('x*x-1',-5,5)
 :::Корни уравнения x*x-1=0 на отрезке [-5,5]
 @nt(1)
 @st(1,'<b>x</b>',k)
 @kt(1)
Вывод

Корни уравнения x*x-1=0 на отрезке [-5,5]

x
-1,000
1,00
Разметка
 ~k=vkv1('sin(x)',-2*pi(),2*pi())
 :::Корни уравнения sin(x)=0 на отрезке [-2pi,2pi]
 @nt(1)
 @st(1,'<b>x</b>',k)
 @kt(1)
Вывод

Корни уравнения sin(x)=0 на отрезке [-2pi,2pi]

x
-6,28
-3,14
-0,000
3,14
6,28
Разметка
 ~k=vkv1('sin(x)+cos(x)',-pi(),pi())
 :::Корни уравнения sin(x)+cos(x)=0 на отрезке [-pi,pi]
 @nt(1)
 @st(1,'<b>x</b>',k)
 @kt(1)
Вывод

Корни уравнения sin(x)+cos(x)=0 на отрезке [-pi,pi]

x
-0,785
2,36

Функция vev1()

Функция vev1(v,a,b[,n[,e]]) возвращает вектор со значениями всех экстремумов выражения v на отрезке [a,b]. Изначально отрезок делится на n равных подотрезков. По умолчанию n=100. Если на подотрезке среднее значение больше левого и больше правого, то производится уточнение локального максимума с точностью до е. По умолчанию e=0.00001. Если на подотрезке среднее значение меньше левого и меньше правого, то производится уточнение локального минимума с точностью до е. В массив экстремумов включаются также значения на концах отрезка.
Разметка
 ~k=vev1('x*x-1',-2,2)
 ~e=tvx('x*x-1',k)
 :::Экстремумы функции x*x-1 на отрезке [-2,2]
 @nt(1)
 @st(1,'<b>x</b>',k)
 @st(1,'<b>y</b>',e)
 @kt(1)
Вывод

Экстремумы функции x*x-1 на отрезке [-2,2]

x
-2
-0,000
2
y
3
-1,000
3
Разметка
 ~k=vev1('sin(x)',-2*pi(),2*pi())
 ~e=tvx('sin(x)',k)
 :::Экстремумы функции sin(x) на отрезке [-2pi,2pi]
 @nt(1)
 @st(1,'<b>x</b>',k)
 @st(1,'<b>y</b>',e)
 @kt(1)
Вывод

Экстремумы функции sin(x) на отрезке [-2pi,2pi]

x
-6,28
-4,71
-1,57
1,57
4,71
6,28
y
0,000
1,000
-1,000
1,000
-1,000
-0,000
Разметка
 ~k=vev1('sin(x)+cos(x)',-pi(),pi())
 ~e=tvx('sin(x)+cos(x)',k)
 :::Экстремумы функции sin(x)+cos(x) на отрезке [-pi,pi]
 @nt(1)
 @st(1,'<b>x</b>',k)
 @st(1,'<b>y</b>',e)
 @kt(1)
Вывод

Экстремумы функции sin(x)+cos(x) на отрезке [-pi,pi]

x
-3,14
-2,36
0,785
3,14
y
-1,00
-1,41
1,41
-1,000

Функция kiv1()

Функция kiv1(v,a,b[,n]) выводит карту изменений выражения v на отрезке [a,b], отслеживая изменения на n подотрезках внутри данного отрезка. В таблице выводятся значения аргумента (колонка X), функции (колонка Y) и прироста функции (колонка dY) на очередном шаге изменения. Если значения функции или её прироста на подотрезке положительны, то соответствующие значения выводятся зелёным цветом. Если отрицательны, то синим. По таблице наглядно видно, где возможны корни и локальные экстремумы. На отрезке, где функция меняет знак в колонке k выводится уточнённое значение корня для данного подотрезка. Там же, где меняет знак прирост функции - в колонке e выводится значение аргумента, при котором на данном подотрезке достигается локальный экстремум, а в колонке fe - значение функции в данной точке.
Разметка
 :::Карта изменений функции sin(x)+cos(x) на отрезке [-pi,pi]
 @kiv1('sin(x)+cos(x)',-pi(),pi())
Вывод

Карта изменений функции sin(x)+cos(x) на отрезке [-pi,pi]

X
Y
k
dY
e
f(e)
-3,14
-1,00
=
-3,08
-1,06
-0,061
-3,01
-1,12
-0,057
-2,95
-1,17
-0,053
-2,89
-1,22
-0,048
-2,82
-1,26
-0,043
-2,76
-1,30
-0,038
-2,70
-1,33
-0,033
-2,63
-1,36
-0,027
-2,57
-1,38
-0,022
-2,51
-1,40
-0,016
-2,44
-1,41
-0,011
-2,38
-1,41
-0,005
-2,32
-1,41
0,001
-2,38
-1,41
-2,25
-1,41
0,006
-2,19
-1,39
0,012
-2,13
-1,38
0,018
-2,06
-1,35
0,023
-2,00
-1,33
0,029
-1,94
-1,29
0,034
-1,87
-1,25
0,039
-1,81
-1,21
0,044
-1,75
-1,16
0,049
-1,68
-1,10
0,054
-1,62
-1,05
0,058
-1,55
-0,984
0,062
-1,49
-0,918
0,066
-1,43
-0,848
0,070
-1,36
-0,774
0,074
-1,30
-0,697
0,077
-1,24
-0,618
0,079
-1,17
-0,536
0,082
-1,11
-0,452
0,084
-1,05
-0,366
0,086
-0,984
-0,279
0,087
-0,920
-0,190
0,088
-0,857
-0,101
0,089
-0,793
-0,011
0,090
-0,730
0,078
-0,785
0,090
-0,666
0,168
0,089
-0,603
0,257
0,089
-0,539
0,344
0,088
-0,476
0,431
0,086
-0,413
0,515
0,085
-0,349
0,598
0,082
-0,286
0,678
0,080
-0,222
0,755
0,077
-0,159
0,829
0,074
-0,095
0,900
0,071
-0,032
0,968
0,067
0,032
1,03
0,063
0,095
1,09
0,059
0,159
1,15
0,055
0,222
1,20
0,050
0,286
1,24
0,045
0,349
1,28
0,040
0,413
1,32
0,035
0,476
1,35
0,030
0,539
1,37
0,025
0,603
1,39
0,019
0,666
1,40
0,013
0,730
1,41
0,008
0,793
1,41
0,002
0,857
1,41
-0,004
0,793
1,41
0,920
1,40
-0,009
0,984
1,39
-0,015
1,05
1,37
-0,020
1,11
1,34
-0,026
1,17
1,31
-0,031
1,24
1,27
-0,037
1,30
1,23
-0,042
1,36
1,18
-0,047
1,43
1,13
-0,051
1,49
1,08
-0,056
1,55
1,02
-0,060
1,62
0,951
-0,064
1,68
0,883
-0,068
1,75
0,811
-0,072
1,81
0,736
-0,075
1,87
0,658
-0,078
1,94
0,577
-0,081
2,00
0,494
-0,083
2,06
0,409
-0,085
2,13
0,322
-0,087
2,19
0,235
-0,088
2,25
0,146
-0,089
2,32
0,056
-0,090
2,38
-0,034
2,36
-0,090
2,44
-0,123
-0,090
2,51
-0,212
-0,089
2,57
-0,301
-0,088
2,63
-0,388
-0,087
2,70
-0,473
-0,085
2,76
-0,557
-0,084
2,82
-0,638
-0,081
2,89
-0,717
-0,079
2,95
-0,793
-0,076
3,01
-0,865
-0,073
3,08
-0,935
-0,069
3,14
-1,00
-0,065
Разметка
 :::Карта изменений функции sin(x) на отрезке [-2pi,2pi]
 @kiv1('sin(x)',-2*pi(),2*pi())
Вывод

Карта изменений функции sin(x) на отрезке [-2pi,2pi]

X
Y
k
dY
e
f(e)
-6,28
0,000
=
-6,16
0,127
0,127
-6,03
0,251
0,125
-5,90
0,372
0,121
-5,78
0,486
0,115
-5,65
0,593
0,107
-5,52
0,690
0,097
-5,39
0,776
0,086
-5,27
0,850
0,074
-5,14
0,910
0,060
-5,01
0,955
0,045
-4,89
0,985
0,030
-4,76
0,999
0,014
-4,63
0,997
-0,002
-4,76
0,999
-4,51
0,979
-0,018
-4,38
0,945
-0,034
-4,25
0,896
-0,049
-4,13
0,833
-0,063
-4,00
0,756
-0,077
-3,87
0,667
-0,089
-3,74
0,567
-0,100
-3,62
0,458
-0,109
-3,49
0,342
-0,116
-3,36
0,220
-0,122
-3,24
0,095
-0,125
-3,11
-0,032
-3,14
-0,127
-2,98
-0,158
-0,126
-2,86
-0,282
-0,124
-2,73
-0,401
-0,119
-2,60
-0,514
-0,113
-2,48
-0,618
-0,104
-2,35
-0,713
-0,095
-2,22
-0,796
-0,083
-2,09
-0,866
-0,070
-1,97
-0,922
-0,056
-1,84
-0,964
-0,041
-1,71
-0,990
-0,026
-1,59
-1,000
-0,010
-1,46
-0,994
0,006
-1,59
-1,000
-1,33
-0,972
0,022
-1,21
-0,934
0,038
-1,08
-0,881
0,053
-0,952
-0,815
0,067
-0,825
-0,735
0,080
-0,698
-0,643
0,092
-0,571
-0,541
0,102
-0,444
-0,430
0,111
-0,317
-0,312
0,118
-0,190
-0,189
0,123
-0,063
-0,063
0,126
0,063
0,063
0,000
0,127
0,190
0,189
0,126
0,317
0,312
0,123
0,444
0,430
0,118
0,571
0,541
0,111
0,698
0,643
0,102
0,825
0,735
0,092
0,952
0,815
0,080
1,08
0,881
0,067
1,21
0,934
0,053
1,33
0,972
0,038
1,46
0,994
0,022
1,59
1,000
0,006
1,71
0,990
-0,010
1,59
1,000
1,84
0,964
-0,026
1,97
0,922
-0,041
2,09
0,866
-0,056
2,22
0,796
-0,070
2,35
0,713
-0,083
2,48
0,618
-0,095
2,60
0,514
-0,104
2,73
0,401
-0,113
2,86
0,282
-0,119
2,98
0,158
-0,124
3,11
0,032
-0,126
3,24
-0,095
3,14
-0,127
3,36
-0,220
-0,125
3,49
-0,342
-0,122
3,62
-0,458
-0,116
3,74
-0,567
-0,109
3,87
-0,667
-0,100
4,00
-0,756
-0,089
4,13
-0,833
-0,077
4,25
-0,896
-0,063
4,38
-0,945
-0,049
4,51
-0,979
-0,034
4,63
-0,997
-0,018
4,76
-0,999
-0,002
4,89
-0,985
0,014
4,76
-0,999
5,01
-0,955
0,030
5,14
-0,910
0,045
5,27
-0,850
0,060
5,39
-0,776
0,074
5,52
-0,690
0,086
5,65
-0,593
0,097
5,78
-0,486
0,107
5,90
-0,372
0,115
6,03
-0,251
0,121
6,16
-0,127
0,125
6,28
0,000
6,28
0,127
Оцените публикацию по предложенной шкале
-5  -4  -3  -2  -1  0  +1  +2  +3  +4  +5

Статистика Код